Among newly diagnosed cancer patients today, 68% are cured (with surgery, chemotherapy and radiation therapy), while for the remaining 32% with advanced disease, the outcome is no different than it was fifty years ago. Despite a quarter of a trillion dollars invested in research, this level of failure is both staggering and perplexing. It is not for lack of molecular and biologic understanding of the disease which have advanced spectacularly. How does cancer remain one step ahead of every therapeutic strategy? What is the secret of its effortless superiority? Perhaps the apparent behavioral complexity of advanced disease is not the result of natural selection but an emergent property following endless iterations as cells follow simple algorithmic rules. The recurrent patterns of metastases support the lesser importance of natural selection. Rather, cancer grows to fill the limited forms available. The behavior and response of individual cells within the tumor will remain unpredictable because even random DNA copying errors could generate profound, arbitrary complexity and diversity. Discovering the initial algorithm cannot be predictive either because the complex behavior is an emergent property. The solution for the patient? Early detection of malignant behavior through biomarkers, scanning and imaging devices, swift elimination and prevention of the disease from morphing into the untreatable end-stage monstrosity.